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ABSTRACT 

 

The investigation of road accident in space and time is essential for the development of 

researches in Road Safety since it allows identifying the degree and variation of accidents 

on a highway. Based on this motivation, this work analyses the four years of data collected 

in a stretch of 20 km of highway, through the application of homogeneous complex networks 

and measures of centrality. The results allowed to identify the main groups of accidents and 

the critical points of the highway. It has been found that the approach by homogeneous 

complex networks to identify groups of accidents can provide competitive results when 

compared with traditional clustering techniques. As the theories of complex network have 

assimilated the concepts of clustering techniques, it can be observed that neighbourhood-

based analysis consists of a refinement of the results obtained with the traditional techniques 

and allows a clearer visualization of the data in the space.  

 

1 INTRODUCTION 

 

Brazil is a developing country characterized by a tendency to increase population density 

and, consequently, the demand for urban mobility. In this scenario, the state of São Paulo, 

located in the southeast region of the country, leads the ranking of the most populous states, 

with 45.1 million inhabitants, concentrating 21.7% of the country's population (IBGE, 2017). 

 

When considering the relationship between deaths and economic development, the city of 

Campinas, located in the state of São Paulo, with a population of 1.098 million inhabitants 

and HDI of 0.805 (2010), occupies the eighth position in the national ranking, with a rate of 

19.4 deaths/100,000 inhabitants (ONSV, 2,014). These figures reinforce that traffic deaths 

in Brazil should be characterized as a public health problem. Reason why researches on 

traffic accidents is of high interest to the country. 

 

Considering the territorial dimensions and regional differences of Brazil, it is verified that 

the number of researches on traffic accident is still insufficient and that the study of this 

phenomenon, in recent years, has been restricted to the use of traditional mathematical tools 

such as statistical tests and regression analyses. However, these approaches have become 

ineffective in the study of multiple and observational problems such as traffic accidents. 

 

In this perspective, the main motivation of this work refers to the difficulty in detecting 

possible natural structures of groups or communities in databases of traffic accidents, since 

they comprise recurrent events, but of random order and of a heterogeneous nature. 



Specifically, it was adopted the modelling by homogeneous complex networks using 

neighbourhood criteria and centrality measures, in order to detect possible patterns, 

connections or temporal space interactions in individual accidents, registered in a Brazilian 

highway, where there is a diversity of properties and characteristics associated with causal 

factors, road infrastructure variables and climatic conditions. 

 

The results obtained indicate the main groups of accidents and the critical points of the 

highway, that is, the sections with the highest concentration of accidents. Because complex 

network theory has assimilated the concepts of clustering techniques, it has been found that 

neighbourhood-based analysis provides a refinement of the results obtained by traditional 

clustering techniques and allows a more adequate visualization of these data in space. 

Finally, the topological analysis of the data provided indications that it cannot be assumed a 

priori that road accident data have natural grouping structures, since each individual accident 

presents a particular set of parameters directly and indirectly recorded in the database. 

 

This article has 6 sections, including this introduction. Section 2 presents a brief discussion 

of the works found in the literature. Section 3 presents the main concepts of the technique 

adopted for modelling the problem. Section 4 discuss the methodology used by the authors. 

The results and final discussions are presented in section 5. Finally, the main conclusions 

are described in section 6. 

 

2 BACKGROUND 

 

In the literature, most of the traffic engineering works explore intensively the statistical tests 

t  and 
2  (Chang and Wang, 2006), as well as the linear regression models (Miaou and 

Lum, 1993), negative binomial (Hauer, 2007), Poisson (Greibe, 2003), logistics and Probit 

(Savolainen et al., 2011).  

 

The statistical tests and the regression models are used to investigate the degree of severity 

of accidents, correlating the type of injury with road and environmental characteristics. 

However, many studies have demonstrated that classic statistical approaches are ineffective 

in the study of multiple and observational problems such as traffic accidents. In addition, 

they require prerequisites between dependent (target) and independent (predictor) variables 

to be adopted a priori, otherwise they lead to illegitimate interpretations of reality, especially 

in complex and dynamic universes such as in road environments (López et al., 2012). 

 

Facing this challenge, the scientific community has been directed to the learning of data 

mining techniques, with the purpose of carefully investigating the multiple factors that 

contribute to traffic accident. Among these techniques are those that allow the reduction of 

the dimensionality of the problem as the PCA – Principal Component Analysis and the 

grouping of data based on similarities as the clustering (Hongyu et al., 2015; Zhang et al., 

1996). These techniques are indicated to the exploratory analysis and pre-processing phase 

of the database. In addition, it has been also adopted, classification and forecasting 

techniques based on the extraction of decision rules using binary tree structures, (López et 

al., 2012; De Oña et al., 2014) and structures in networks, such as artificial neural networks, 

Bayesian networks and, more recently, complex networks (Newman, 2003). 

 

The tree structures are indicated to carry out specific analysis of a certain category of a 

dependent variable in the severity of the accident, such as the driver's profile (age, sex), level 

of drunkenness (high, low, medium), among others. While network-based techniques are 



used when multiple associations between the variables present in a database are necessary 

to understand multi-causal effects associated with road accidents. 

 

Neural and Bayesian networks are effective in modelling real systems such as in transport 

networks including roads, railways and airports, where we represent the places and the links 

the information flow of the network. However, the real world is a complex system that has 

no trivial topological structure with irregular or random connection patterns, community 

structure, and other statistical characteristics, which makes modelling based on traditional 

graph theory insufficient and inefficient to explain its behaviour and dynamic aspects 

(Barabási et al., 2002).  

 

Complex networks, in turn, comprise a still recent approach whose resources can be applied 

to almost all systems, as there are different measurement or calculation tools that allow 

solving and answering specific questions and questioning certain problems. They represent, 

therefore, a general, but powerful means of representing patterns, connections, or 

interactions in dynamic and complex natural systems of the real world, in which one has a 

diversity of properties and characteristics (Newman, 2010). 

 

The advantage of using complex networks in the analysis of nonlinear systems, whose 

variables interact with each other and exhibit both emergent and hidden relations, refers to 

the fact that the vertices and edges can be labelled with additional information and through 

a vast tooling mathematical, as the measures of centrality. This allows to describe in more 

detail the characteristics and the distributions of the modelled system (Newman, 2010).  

 

3 COMPLEX NETWORKS 

 

Formally, a network R  can be described by the relation ),( EVR  , on what V  corresponds 

to the set of vertices indicated by  nvvvV ,...,, 21  and E  corresponds to the set of edges 

or links, indicated by  neeeE ,...,, 21 , (Newman, 2004a). In a network R  an edge e  is 

defined by the relation  ),|,(),(, Vuvvuuve uv  , in which each edge uve ,  connects to at 

least two vertices v  and u , called end edges. The vertices v  and u  are neighbors or adjacent 

and can be denoted by vu ~ , that is, u  tending v . The number of neighbors of the vertex u  

is called degree ( d ) of u , expressed algebraically by  vuVvud ~|)(  , (Kunegis, 2014). 

 

In complex networks, when storing information, some considerations can be made about 

the vertices and links in the modelling process. A network can be classified as multimodal 

when the information is present at the vertices, multi-relational or multidimensional, when 

information is present on the links (Wasserman and Faust, 1994), or heterogeneous, when 

it is multimodal and multi-relational, (Han et al., 2009). 

 

Regarding the links, one of the fundamental properties refers to the targeting (Newman, 

2010; Soares and Prudêncio, 2012). Targeting indicates the type of relationship between the 

vertices that make up the network. Relationships can be directional giving origin to 

directional networks (oriented or digraphs), in which, for each link, one vertex acts as 

transmitter and the other as receiver. When the relationship between the vertices is 

reciprocal, the network is called non-directed or no oriented. 



 

3.1 Measures of centrality 

 

The centrality measures are proposed with the objective of capturing the importance of 

vertices and edges in a given context and incorporate concepts such as the shortest distance, 

the number of smaller paths and the average degree of centrality of the vertices that make up 

a network. These measures allow the identification of the most influential nodes in the 

topological construction of a network. Among the most known measures of centrality are 

the Degree Centrality ( DC ), the Betweenness Centrality ( BC ) and the centrality of 

Closeness Centrality ( CC ), (Bao et al., 2017; Bonacich, 1987 and Newman, 2010).  

 

The DC  represents the number of vertices directly connected to a specific vertex (Bonacich, 

1987). Thus, given a no directed network represented by ),( EVR  , with V  vertices and 

E  edges, its structure can be described by an adjacent matrix or matrix of relationships A

with n  vertices and of dimensions nn . In this case,
nnijaA


 , where a  refers to the 

elements of the adjacent matrix and the indices i  and j  to the nodes or vertices belonging 

to V . Then, 1, jia  if the node i  is connected to the node j  and 0, jia  otherwise. The 

DC of node i  is defined as the number of incident edges, as shown in Equation (1), 

(Newman, 2004b): 

 


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The BC  corresponds the average of the smallest paths that pass through a vertex. It is the 

most used measure to explain the flow of information in road networks, because it indicates 

the vertices that appear more frequently between the paths or links. In this way, the BC  of 

a certain vertex Rv  if based on the count of the smallest paths calculated by Equation (2), 

(Brandes, 2001): 
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Where st  comprises the amount of smaller paths connecting all pairs of vertices s , v  and t  

 V , and )(vst  the number of smaller paths connecting all the pairs of vertices that pass 

through v . 

 

The CC  is defined as the sum of the shortest distance from one vertex to the other vertices 

of the network (Sabidussi, 1966). It corresponds to the inverse of the mean distance of the 

shortest path, as shown in Equation (3), (Newman, 2010): 
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Where il  indicates the average distance between the vertices i  and j , n  the number of 

vertices of the network and jid ,  corresponds to the length of the shortest path between the 

vertices i  and j , that is, the number of edges detected along the path. Therefore, the lower 

values of CC  indicate that the vertices are in the same neighbourhood or how much the 

observables are similar to each other. Proximity indicates how close this vertex is to all other 

vertices of the network. 

 

4 METODOLOGY 

 

4.1 Case study 

 

For the study of the temporal variation of road accidents it was used a database with 2,903 

road accidents occurring in the period of four years (2009 to 2012), on the Dom Pedro I 

Highway (SP-065), between km 125 and km 146, in the urban sector of the Municipality of 

Campinas, in the State of São Paulo, Brazil. The study was based on the application of the 

technique of homogeneous complex networks. 

 

The variables considered in the analysis were mileage, accident type (rear-end collision, 

head-on collision, transverse collision, sideswipe collision, pile-up, rollover, pedestrian 

collision and crash with fixed or mobile object), weather condition (dry, wet and oily), 

geometry road (straight, smooth curve and sharp curve) and profile road (level, ascending, 

descending).  

 

The time selected in this study corresponds to the time interval that precedes the 

implementation of traffic accident countermeasures and the construction of marginal roads 

in the analysed sector. In addition, the 21 kilometres of the SP-065 were selected based on 

the spatial configuration of the site, which suggests a clear traffic conflict between the flow 

generated by the population living in the region or around the macro region of Campinas 

with the daily traffic of vehicles of the highway. 

 

4.2 Detection of clusters using homogeneous complex networks and measures of 

centrality 

 

The selected variables were analysed using the algorithm for the construction of 

homogeneous complex networks using the algorithm k Nearest Neighbors ( NNk  ), 

which chooses for each iteration the k  neighbors with the highest number of correlated 

attributes. The NNk   algorithm requires that a vertex connect to its closest neighbors, even 

if some of these vertices are distant or have some dissimilarity with the neighbourhood 

(Anastasiu and Karypis, 2015). Therefore, it is interesting that in addition to the construction 

of the networks, the properties associated to network centrality measures, such as degree of 

centrality, betweenness and closeness of centrality were also verified. Based on this, one can 

identify the communities obtained by the algorithm NNk  , which correspond to sub-graphs 

that are densely connected internally and with few external connections, and then, depending 

on these measurements and the frequency of occurrence of observations at each vertex, refine 

the results and obtain structures of more homogeneous communities. 

 

The centrality measures used in this work were carried out with the help of the IGraph 

library, available in the Python language, which presents the state of the art in algorithms 



based on metrics for analysis of graphs, complex networks and community structures (Csárdi 

and Nepusz, 2006). 

 

In this work, it was adopted networks with 12k  vertices. since for 12k  vertices it has 

been obtained disjointed networks with the formation of isolated communities. For 12k  

vertices it was not identified any significant changes in the network. Therefore, for 12k  

it was obtained smoother and uniform networks, with a tendency to generate as many 

communities as existing classes. Scenarios were generated with 2 to 6 communities to obtain 

homogeneous structures of accidents with maximum heterogeneity among them. 

Communities were broken down by acronym iC , on what C  indicates community and i  

refers to the community index. 

 

5 EXPERIMENTS AND ANALYSIS OF RESULTS 

 

For the year 2009, considering the homogeneity of each community and the maximum 

heterogeneity among the community structures generated, it was verified that the results 

suggest that the algorithm NNk   with 12k  converge for the year 2009 with four 

communities )( 4
1iC . The 1C  concentrates 30% of data, the 2C  10% of the observables, the 

3C  and the 4C , respectively, 40% and 20% of total of the occurrences. 

 

In order to validate the results and verify the optimal convergence it was analysed the 

frequency of occurrence of the observations in each km for the database of the year 2009, as 

shown in Figure 1. 

 

 
Fig. 1 Homogenous segments obtained for the year 2009. 

 

In the optimal scenario formed by 4
1iC  (Figure 1) for the year 2009, the critical points in the 

1C  were from km 144 to km 146, in the 2C  from km 125 to km 131, in the 3C  the kilometres 

128 and 138 and in the 4C  the kilometres 129, 132 and 136. The scenario with 4
1iC  resulted, 

in general, in communities with lower closeness values (0.2 to 0.39), fewer high betweenness 

(0.57 to 0.87), and more homogeneous degree distribution (13 to 41).  
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The accidents of the 1C  occurred predominantly in oily pavement condition. The accidents 

of the 2C  occurred in dry and wet pavement condition for all types of road geometry and 

profile. In the 3C  they occurred in wet pavement condition for all types of road geometry 

and profile. Finally, in the 4C  they occurred in the dry, wet and oily pavement condition for 

all types of road geometry and profile. 

 

Figure 2 represents the spatial distribution of the communities for the year 2009 applying 

the PCA technique with reduced number of components or linear combinations between the 

five observables reduced from five to two dimensions. 

 

 
Fig. 2 Network of the communities of traffic accidents for 2009 year. 

 

For the year 2010, the NNk   algorithm converges optimally with 4
1iC  , as shown in Figure 

3. The 1C  presents 38% of data, the 2C  presents 38%, the 3C  presents 3% and the 4C  

presents 21% of data. The community structure presents measures of proximity ranging from 

0 to 0.04, intermediation measures from 0 to 0.80 and degree ranging from 12 to 40. In 1C  

the accidents are of the type rollover, pedestrian collision, overturning and crash with fixed 

or mobile object, which occurred in dry, wet and oily pavement condition, in all type of road 

profile (level, ascending and descending) and road geometry (straight, smooth curve and 

sharp curve). In the 2C  occur the accidents of the type rear-end collision, transverse collision, 

sideswipe collision, pile-up, rollover and overturning, in dry and wet pavement condition, in 

stretches with different road geometry and profile. In 3C  the accidents occur predominantly 

in stretches with sharp curve and ascending, in dry and wet pavement condition, being of the 

type rear-end collision, head-on collision, pile-up, rollover, overturning and crash. In 4C  the 

accidents occur in all pavement condition, all road geometry and profile, being of the type 

rear-end collision, head-on collision, transverse collision, sideswipe collision and 

overturning. 

 



 
Fig. 3 Network of the communities of traffic accidents for 2010 year. 

 

The critical sections observed for the year 2010 were detected approximately in the km 139, 

km 142, km 143 and km 145. In terms of homogeneous segments for 2010, we have the first 

segment located between km 125 to km 135 and km 137 to km 141. The second segment 

located between km 138 and km 146 and the third segment located between km 129 to km 

136. 

 

For the year 2011, there was a greater concentration of accidents at km 139 and between km 

141 to km 145. The homogeneous segments were detected between km 139 to km 146, km 

125 to km 129 and km 130 to km 138. The NNk   algorithm converged optimally with 3
1iC

as indicates in Figure 4. Being 1C  with 42% of the data, the 2C  with 36% and 3C  with 22% 

of the data. The 1C  presents the accidents rear-end collision, head-on collision, transverse 

collision, sideswipe collision, pile-up and rollover, occurring in dry and wet pavement 

condition, with straight or sharp curve geometry road and in different profile road. It presents 

values of measures of centrality between 0 to 0.48 for betweenness, 0 to 0.01 for closeness, 

and 12 to 60 for degree. The 2C  is formed by accidents of the type rollover, pedestrian 

collision, overturning, crash with fixed or mobile object and other, occurring in dry and wet 

pavement condition, in all types of road geometry and profile. It presents values of measures 

centrality of betweenness between 0 to 0.96, closeness between 0 to 0.01 and degree of 13 

to 37. The 3C  contains the accidents rear-end collision, transverse collision, sideswipe 

collision, pile-up and overturning, occurring in dry and wet pavement condition, and in all 

type of road geometry and profile. It presents the measures centrality betweenness between 

0 to 0.92, the closeness between 0 to 0.01 and degree of 12 to 34.  

 



 
Fig. 4 Network of the communities of traffic accidents for 2011 year. 

 

Finally, for the year 2012, checks of the NNk   algorithm converged optimally with 3
1iC , 

as presented in Figure 5. The 1C  presents the accidents of the type rear-end collision, 

transverse collision, sideswipe collision and pile-up occurring in dry and wet pavement 

condition, straight, smooth and sharp curve geometry, with ascending, descending and 

levelled profile road, with measures of centrality between 0 at 0.47 for betweenness, between 

0.13 at 0.32 for closeness and between 13 to 39 for degree. In 2C  the more frequent accidents 

are rollover, pedestrian collision, overturning, crash and others, with dry, wet and oily 

pavement condition, with straight, smoot and sharp curve geometry, with ascending 

descending and levelled profile road. The measures of centrality were between 0 to 0.82 for 

betweenness, between 0.19 to 0.31 for closeness and between 13 to 38 for degree. In the 3C  

stand out the accident of the type, rear-end collision, head-on collision, sideswipe collision, 

pile-up, rollover and pedestrian collision, with dry and wet pavement condition, with 

straight, smooth and sharp curve geometry, with ascending, descending and levelled profile 

road. The measures of centrality were between 0 to 0.82 for betweenness, between of 0.19 

to 0.31 for closeness and between 13 to 38 for degree. 

 

 
Fig. 5 Network of the communities of traffic accidents for 2012 year. 

 



For the year 2012, critical points were detected approximately at km 134, km 137, km 139 

and between km 141 to km 145. Homogeneous stretches were detected between km 139 to 

km 146, 137 to km 138 and km 125 to km 136. 

 

6 CONCLUSIONS 

 

This work explores road accidents on highways based on the theory of homogeneous 

complex networks and measures of centrality. The data were analysed in space and time, in 

order to detect the impact of factors related to road infrastructure and environmental 

conditions in the individual occurrences of traffic accidents. 

 

The preliminary results of the research still under development allowed identifying that the 

proposed approach provides the numerical and spatial analysis of dynamic aspects in 

communities of accidents. It was possible to detect the main groups of accidents and critical 

points of the highway, that is, the sections with the highest concentration of recorded 

occurrences, highlighting the homogeneity and heterogeneity of the obtained groupings. 

 

The theory of complex networks is more adequate to investigate the phenomenon of road 

accident when compared to traditional and unsupervised techniques such as clustering, since 

accident databases have a high number of elements per class while in the analysis of 

clustering, only the number of classes is considered, that is, the method is independent of the 

number of neighbors in the network. 

 

The construction of networks allows the simultaneous evaluation of the elements belonging 

to the classes and their categories, based on neighbourhood criteria, allowing to identify the 

number of neighbors in the network that provides the largest extraction of information from 

the database. 
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